OPTIMAL MOMENT INEQUALITIES FOR ORDER STATISTICS FROM NONNEGATIVE RANDOM VARIABLES
نویسندگان
چکیده
منابع مشابه
Bounds for CDFs of Order Statistics Arising from INID Random Variables
In recent decades, studying order statistics arising from independent and not necessary identically distributed (INID) random variables has been a main concern for researchers. A cumulative distribution function (CDF) of these random variables (Fi:n) is a complex manipulating, long time consuming and a software-intensive tool that takes more and more times. Therefore, obtaining approximations a...
متن کاملSOME PROBABILISTIC INEQUALITIES FOR FUZZY RANDOM VARIABLES
In this paper, the concepts of positive dependence and linearlypositive quadrant dependence are introduced for fuzzy random variables. Also,an inequality is obtained for partial sums of linearly positive quadrant depen-dent fuzzy random variables. Moreover, a weak law of large numbers is estab-lished for linearly positive quadrant dependent fuzzy random variables. Weextend some well known inequ...
متن کاملMaximal Inequalities for Associated Random Variables
In a celebrated work by Shao [13] several inequalities for negatively associated random variables were proved. In this paper we obtain some maximal inequalities for associated random variables. Also we establish a maximal inequality for demimartingales which generalizes and improves the result of Christofides [4].
متن کاملConcentration and moment inequalities for polynomials of independent random variables
In this work we design a general method for proving moment inequalities for polynomials of independent random variables. Our method works for a wide range of random variables including Gaussian, Boolean, exponential, Poisson and many others. We apply our method to derive general concentration inequalities for polynomials of independent random variables. We show that our method implies concentra...
متن کاملMoment inequalities for functions of independent random variables
A general method for obtaining moment inequalities for functions of independent random variables is presented. It is a generalization of the entropy method which has been used to derive concentration inequalities for such functions [7], and is based on a generalized tensorization inequality due to Lata la and Oleszkiewicz [25]. The new inequalities prove to be a versatile tool in a wide range o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Probability in the Engineering and Informational Sciences
سال: 2019
ISSN: 0269-9648,1469-8951
DOI: 10.1017/s0269964819000287